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Abstract: This study addresses the problem of the automatic detection of disease states of the retina.
In order to solve the abovementioned problem, this study develops an artificially intelligent model.
The model is based on a customized 19-layer deep convolutional neural network called VGG-19
architecture. The model (VGG-19 architecture) is empowered by transfer learning. The model is
designed so that it can learn from a large set of images taken with optical coherence tomography
(OCT) and classify them into four conditions of the retina: (1) choroidal neovascularization, (2) drusen,
(3) diabetic macular edema, and (4) normal form. The training datasets (taken from publicly available
sources) consist of 84,568 instances of OCT retinal images. The datasets exhibit all four classes of
retinal disease mentioned above. The proposed model achieved a 99.17% classification accuracy with
0.995 specificities and 0.99 sensitivity, making it better than the existing models. In addition, the
proper statistical evaluation is done on the predictions using such performance measures as (1) area
under the receiver operating characteristic curve, (2) Cohen’s kappa parameter, and (3) confusion
matrix. Experimental results show that the proposed VGG-19 architecture coupled with transfer
learning is an effective technique for automatically detecting the disease state of a retina.

Keywords: artificial intelligence; image processing; diseased state of retina; transfer learning; neural
networks; VGG-19 architecture; performance analysis

1. Introduction

Deep learning (DL) for medical image analysis has brought a big improvement in the
detection of disease and its diagnosis. In earlier scientific methods, the detection of disease
is less reliable, prone to erroneous detection, and even takes a large amount of time for
proper conclusions. However, in recent times, the biomedical field started using machine
learning techniques on a large scale for disease detection, which provides high accuracy
results with concise timing. One of the most common causes, why people lose eyesight at a
significantly early age, are diseases or damage to the retina (a fine layer located at the inner
backside of the human eyeball) causing adverse effects on the retina. This paper throws
light on the computer-assisted automated detection procedures of retinal diseases (namely
choroidal neovascularization (CNV), diabetic macular edema (DME), normal, and drusen)
using transfer learning. Some OCT images of the retina representing the abovementioned
three diseases and one normal state are shown in Figure 1.
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diagnosis comprises a large amount of image pre-processing, which will then be fed into 
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The motivation of present research is the challenges faced by the researchers in the area 
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Machine learning (ML) models and DL models continue to provide significant per-
formance in the diagnosis of retinal disease. In the present work, DL methods are pre-
ferred because of their capability to understand and process biological data and ability to 
extract high-level abstract features from the sample images. The objective of our study is 
to employ a transfer learning methodology over a VGG-19 network with pre-trained 
weights of ImageNet dataset. The performance is evaluated and compared with the pre-
existing methods for retinal disease detection. The performance and accuracy of the pro-
posed model are validated over an independent testing dataset and on a foreign dataset 
(unknown dataset to model), named DHU (stands for Duke University, Harvard Univer-
sity, and the University of Michigan) dataset of OCT scanned retinal images of 45 patients. 
The application of this work is to automate retinal disease detection and provide a com-
puter-assisted diagnosis for many eye conditions like macular edema, age-related macular 
degeneration, and diabetic retinopathy. The key contributions of the proposed work are 
as follows: 
• The proposed work provides an automatic retinal disease detection solution where 
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VGG-19 have been experimented with using the concept of transfer learning. 

• A substantial performance improvement has been observed when the transfer 
learned deep VGG-19 model is used on a different database of OCT images as com-
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pre-trained on a huge dataset performs better than the deep models trained from 
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and are competent enough to resolve overfitting issues in any medical image classi-
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trained on the imagenet, a huge natural image dataset. To enhance the training ability 
of the proposed model, transfer learning has been applied in which a few more layers 
have been added to the proposed model. Only the weights of convolutional layers from 
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Retinal disease detection is a classical classification problem for machine learning.
The present work solves the problem by automating the detection of diseases from their
corresponding scanned optical coherence tomography (OCT) images of the retina among
4 different classes of retinal states (including CNV, drusen, DME, and normal). As the
use of imaging technique, optical coherence tomography (OCT) is increasing day by day
in medical science, a computer assisted diagnosis system could be very successful and
reliable in the automatic detection of retinal diseases and will help in their treatment and
monitoring. In case of conventional methodologies, the process of automated retinal disease
diagnosis comprises a large amount of image pre-processing, which will then be fed into a
shallow neural network, which is a relatively time-consuming process. Because of these
limitations of shallow networks, we will be implementing transfer learning techniques.
The motivation of present research is the challenges faced by the researchers in the area of
retinal diseases diagnosis.

Machine learning (ML) models and DL models continue to provide significant perfor-
mance in the diagnosis of retinal disease. In the present work, DL methods are preferred
because of their capability to understand and process biological data and ability to extract
high-level abstract features from the sample images. The objective of our study is to employ
a transfer learning methodology over a VGG-19 network with pre-trained weights of Ima-
geNet dataset. The performance is evaluated and compared with the pre-existing methods
for retinal disease detection. The performance and accuracy of the proposed model are
validated over an independent testing dataset and on a foreign dataset (unknown dataset to
model), named DHU (stands for Duke University, Harvard University, and the University
of Michigan) dataset of OCT scanned retinal images of 45 patients. The application of this
work is to automate retinal disease detection and provide a computer-assisted diagnosis for
many eye conditions like macular edema, age-related macular degeneration, and diabetic
retinopathy. The key contributions of the proposed work are as follows:

• The proposed work provides an automatic retinal disease detection solution where
many architectures of deep convolutional networks like ResNet 50, InceptionV3, and
VGG-19 have been experimented with using the concept of transfer learning.

• A substantial performance improvement has been observed when the transfer learned
deep VGG-19 model is used on a different database of OCT images as compared with
the existing state-of-the-art methods.

• In the biomedical field, it has already been proven that deep convolutional networks
pre-trained on a huge dataset performs better than the deep models trained from
scratch [1]. Moreover, pre-trained deep models with transfer learning perform well and
are competent enough to resolve overfitting issues in any medical image classification
task [2,3]. Hence, in the proposed work, the VGG-19 model has been pre-trained on
the imagenet, a huge natural image dataset. To enhance the training ability of the
proposed model, transfer learning has been applied in which a few more layers have
been added to the proposed model. Only the weights of convolutional layers from the
pre-trained VGG-19 model have been used. The last three layers or dense layers of
the proposed model have been trained using new classes so that our model is able to
resolve cross-domain image categorization problems. The only purpose of pre-training
transfer learning is to save time, resources, and resolve overfitting issues.
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The paper is organized as follows: Section 2 includes the survey of the previous
related works; Section 3 describes novel detailed research methodology and databases
employed in this work; Section 4 contains the detailed results obtained during this research
work; Section 5 contains a brief discussion of the employed novel approach; and lastly, the
conclusion and some future directions are given in Section 6.

2. Related Work

For the early detection of retinal diseases, optical coherence tomography (OCT) is
preferred. Srinivasan et al. [4] implemented a system based on support vector machine
(SVM) and histogram of oriented gradient (HOG) descriptors. The HOG features are
extracted to detect retinal diseases, specifically diabetic macular edema (DME) and age-
related macular degeneration (AMD). The author used a publicly available DHU dataset of
OCT scanned images and achieved a high accuracy of 100% for AMD, 100% accuracy for
DME, and 86.76% accuracy for normal states of the retina. Here, the accuracy of normal is
all right, but 100% accuracy of DME and AMD gives hints towards the possibility of an
overfitting problem in their developed model. Alsaih et al. employed the linear SVM over
their proprietary dataset to automate the classification of the OCT scanned images of DME
and a normal retinal state [5]. The proposed model observed a final specificity of 87.5% and
sensitivity of 87.5%. Lemaitre et al. proposed the use of exaggerated local binary patterns
over OCT images data of a proprietary dataset, and it acquired overall specificity of 93.7%
and sensitivity of 81.2% [6]. Later, Lu et al. developed an approach proposing the combined
use of four binary classifiers as DCNN to distinguish the abnormalities from OCT scanned
retinal images [7]. Their proposed approach was applied over a proprietary dataset, and
their developed model attained an accuracy of 94.00% with AUC score of 0.984.

Gulshan et al. proposed a transfer learning approach over Inception architecture for
the detection of DME and diabetic retinopathy from OCT fundus photography images [8].
The work achieved an accuracy of 99.1%, with good specificity of 98.1% and with good
sensitivity of 90.3% over the EyePACS-1 OCT retinal images dataset. On the Messidor-2
OCT retinal images dataset, the work reported an accuracy of 99.0%, with a good specificity
score of 98.1% and a good sensitivity score of 87.00%. Similarly, Karri et al. used the
deep-learning based approach over the Inception model architecture in order to automate
the classification process of retinal scanned images into two classes [9]. These two classes
were age-related macular degeneration and diabetic macular edema. Their developed
approach acquired an overall accuracy of 91.33%. The detection accuracy of age-related
macular degeneration is found to be better than that of diabetic macular edema. Later,
Kermany et al. used CNNs and a deep learning-based technique over Inception architecture
to automate the process of classification of choroidal neovascularization, diabetic macular
edema, and drusen [10]. Their proposed approach has acquired an accuracy of 96.60% and
got sensitivity and specificity as of 97.8% and 97.4%, respectively. However, in their work
study, the sub-dataset used in the testing process is also used in the validation process, so
we can say the model is biased.

Fauw et al. used ensemble methodology—a machine learning approach in which a
number of models are combined to predict the classes of the classification problem of retinal
diseases [11]. Although they have achieved better performance, the complexity of model
training has also increased. Rasti et al. proposed the use of an ensemblence methodology
over MCME models to the given retinal diseases classification problem [12]. The researchers
achieved a precision score of 98.6% and a good AUC score of 0.998. Lately Feng Li et al. also
employed an ensemble methodology over four ResNet50 model architectures for automatic
classification of retinal diseases [13]. The work reported an overall accuracy of 97.3%, with
a good specificity score of 98.5% and good sensitivity score of 96.30%.

In [14], Burlina et al. describe an effective approach involving the use of deep learning
by employing a deep convolutional neural network (Alex-Net) to automate the classification
process of age-related macular degeneration and normal states of the retina from their OCT
scanned images. Their developed model achieved an accuracy of 88.4–91.6% with a kappa
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score of 0.8. Recently, Tan et al. proposed a 14-layers deep CNN (convolutional neural
network) in order to classify the age-related macular degeneration and normal states of
the retina [15]. Their proposed model acquired an overall accuracy of 91.4%, with a good
specificity score of 88.5% and a good sensitivity score of 92.6%. Schlegl et al. also provide a
description in their work about (SRF) subretinal fluid and IRC (intra retinal cystoid fluid)
in OCT scanned images, which becomes the main source in the treatment of retinal disease
like AMD and DME [16]. They also used deep convolutional neural networks over their
own proprietary dataset of OCT-scanned retinal images. The developed model is found to
achieve an overall accuracy of 94.0% with a precision value of 91.00% and a recall value
of 84.0%. The dataset majorly used in retinal disease classification are DHU dataset used
in [4,9,12,17], the Mendeley OCT-Images dataset used in [10], the Bioptigen SD-OCT dataset
used in [18,19], Heidelberg Spectral is HRA-OCT dataset used in [20,21], and NEH OCT-
Images dataset used in [12,22]. The present research work used the Mendeley OCT-Images
dataset.

In recent years, deep learning models are at the forefront of medical research. Recently,
authors presented a coherent convolutional network for retinal disease detection [23].
The author made some variations in the VGG model to identify efficient features and
simplify the neural network architecture. In [24], few-shot learning using generative
adversarial networks has been successfully implemented to diagnose rare retina diseases.
In another work, the author used a lightweight CNN named OctNET for retinal disease
classification [25]. Recently, deep-learning techniques significantly contributed a lot in the
diagnosis of diseases like breast cancer [26] and acute leukemia [27].

From the above literature survey, we got a direction for the present research work.
We have observed that the deep learning model with transfer learning has been explored
less in the medical diagnosis system. As we know, the deep learning model requires a
large amount of data for good accuracy. Usually, the retinal image data provided by the
clinics are not sufficient. In that situation, transfer learning can solve and prove to be more
advantageous. Therefore, in the present work, we developed a transfer learning-based
deep learning model for retinal diseases detection that also work for limited image dataset.
We had to select appropriate model architecture and training parameters, to get a high
performance detection model.

3. Research Methodology
3.1. Proposed Model

The VGG-19 model is a variant of the VGG (Visual Geometry Group) model [28]. As
its name specifies the model consists of 19 layers. This pre-trained network comprises
16 convolution layers and 3 fully connected layers. It has 5 max pool layers and 1 softmax
layer too. The present work proposed customization of the VGG model to achieve better
results. The VGG-19 model is pre-trained only on ImageNet dataset. Therefore, customiza-
tion is performed here to make our proposed model stronger in terms of identifying new
images/features. The schematic illustration of the proposed work is shown in Figure 2.
In the proposed model, the top-notch layers from VGG19 architecture are removed and
replaced by one flatten, one dropout, and one output dense layer. Furthermore, no layers
in the proposed model were frozen, and all training processes went through complete
architecture. Here, “frozen” means the weights are not modified by the model after each
epoch, though “frozen” enhances the training process but reduces the training accuracy.
“Went through complete architecture” means weights are updated after each epoch.

Figure 3 presents the final architecture of the proposed model and is summarized as
follows:

• Input: RGB images of size (150 × 150). The size of the input matrix is (150, 150, 3).
• Kernel size of 3 × 3 is used with a stride size of 1. The relationship is shown in

Equations (1) and (2) [29].

wnx = w(n−1)x − fnxsnx + 1 (1)
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wny = w(n−1)y − fnysny + 1 (2)
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Here, the size of the output feature map is represented by (w nx, wny
)
, stride size is

represented by (s nx, sny
)
, kernel size is represented by ( f nx, fny

)
, and index of layers is

represented by n. In the present work, the size of the input image is 150 × 150, which
is difficult to show diagrammatically. Therefore, for a better understanding, a scaled-
down example is taken and shown in Figure 4. The working of kernel and stride used for
calculating the output feature map is shown in the diagram.
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• Max pooling operation is performed over 2 × 2 pixel windows with stride 2. The
function of pooling layer is to reduce input dimensionality and, hence, reduce the
model complexity. Max pooling operation helps in faster convergence and better
generalization as it takes maximum values (information) from each sub-region [29].

• All layers are flattened.
• Finally, there is an output dense layer (None, 4), which is used for the prediction of

output with softmax activation. Here, 4 represent four output classes.
• Softmax activation helps in multiclass classification and works on relative probabilities.

Equation (3) is used for the softmax (represented by Soft_Max) activation function.

So f t_Max(yi) =
exp(yi)

∑j exp(yj)
(3)

Here, the y represents the values from the neurons of the output layer (i.e., output
from the node). Let us take an example to understand the softmax activation function
working. Consider (y21, y22, y23, and y24) as output from the output dense layer. Now the
softmax activation is applied to the above output. We get the final output as follows:

So f t_Max(y21) =
exp(y21)

exp(y21) + exp(y22) + exp(y23) + exp(y24)
→ Prob(Class1)

So f t_Max(y22) =
exp(y22)

exp(y21) + exp(y22) + exp(y23) + exp(y24)
→ Prob(Class2)

So f tMax(y23) =
exp(y23)

exp(y21) + exp(y22) + exp(y23) + exp(y24)
→ Prob(Class3)

So f t_Max(y24) =
exp(y24)

exp(y21) + exp(y22) + exp(y23) + exp(y24)
→ Prob(Class4)

• The exponential acts as the non-linear function. Later, these values are divided by
the sum of exponential values in order to normalize and then convert them into
probabilities.

• Total trainable parameters in the proposed model are 20,057,156.

3.2. Data Used

In this research, the dataset used for analysis/training/testing is named “Large Dataset
of Labeled Optical Coherence Tomography (OCT) and Chest X-ray Images” [30] and taken
from the source Mendeley data where it is freely available for study and research. The
dataset contributors are Daniel Kermany, Michael Goldbaum, and Kang Zhang. The dataset
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is arranged into three sections (training, testing, validation) and each of which is further
arranged into four subsections one for each image category (normal, CNV, drusen, DME).
The whole dataset consists of approx. 84 thousand OCT retinal scan images in JPEG format.
These images are named as per the rule, (disease_name)-(patient_ID)-(image_number).
Dataset images were collected between 1 July 2013 and 1 March 2017 from the retinal
scans of adult patients at California Retinal Research Foundation, Shiley Eye Institute of
the University of California, Beijing Tongren Eye Center, Medical Center Ophthalmology
Associates, and the Shanghai First People’s Hospital [31].

3.3. Data Preprocessing

In this section, some set of key observations over the data are identified and becomes
the basis of preprocessing performed over the training subset of data before actual training
of the proposed deep learning model. This preprocessing and experiment design are
represented clearly in Figure 5. The preprocessing process performed on the sample data
comprises of following steps:

(i) Synthetization of Input Image: After analyzing a set of images from all four classes
(normal, drusen, DME, and CNV) it has been observed that shape of images in the
training dataset is of varying size. Therefore, all the images were synthesized in the
same shape of 150 × 150. This ensures our model is less error prone.

(ii) Image Rescaling: Rescaling pixels of all data images into (0–1) with a rescaling
factor = 1./255 on all training, validation, and test datasets.

(iii) Data Augmentation: The image augmentation technique is done on the training
dataset, which makes the training set much bigger and enhances the capability of the
model to handle images on a different axis. The following augmentation is performed
on images.
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Brightness Range = (0.55, 0.9)
Width Shift Range = 0.10,
Rotation Range = 10,
Fill Mode = ‘constant’,
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Height Shift Range = 0.10.

3.4. Model Training

The dataset used in this research work is already being divided into training, testing,
and validation subsets. The split is done independently at the candidate level (not at data
level), which simply means each and every image of a particular candidate is included
in the same sub-section of the dataset (either training or testing). The architecture of the
proposed VGG-19 based model is represented in Figure 3. The VGG-19 based model
trained in this research work (with ImageNet pre-trained weights) has parameters, which
are optimized and shaped on the validation dataset and training dataset, respectively.
During the training process, a total of approx. 2600 steps with a batch size of 32 images per
epoch were performed and the other parameters used in model training during this novel
work are summarized in the Table 1.

Table 1. Parameters and Data subsets used in proposed work.

Experiment Parameters Specific Values

Initialized Weights ImageNet Dataset
Dataset for Training 83,484 OCT images, divided into 4 sections

Dataset for Validation 32 OCT images, divided into 4 sections
Dataset for Testing 968 OCT images, divided into 4 sections
Input image size 150 × 150
Model Output Softmax probability for 4 respective states of retina.

Model Training steps per epoch Approx. 2600 steps per epoch

3.5. Algorithm

The proposed approach used in this work is specialized to achieve better-automated
detection of retinal diseases. This model is developed and its performance is recorded and
compared to existing models. The structure shown in Figure 4 consists of layers from the
pre-trained model and a few new layers. These algorithmic steps of this research work are
represented visually in Figure 6.
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The algorithmic workflow of this research work is described as follows:

1. Collect data from the source [30]. Data comprises one directory, which has three
sub directories, namely train, validation, and test. Data organization is explained in
Figure 5.

2. Make ImageDataGenerator, which will read images according to the directory name.
Three ImageDataGenerators are made for reading images from three directories,
namely train, validation, and test. Each of which further contains 4 subdirectories for
DME, drusen, CNV, and normal images. Perform resize and scaling of input images
to (150 × 150) as source images are of different shapes. All preprocessing is done only
on a training dataset.

3. Initialize VGG19 architecture with predefined ImageNet weights using TensorFlow,
while ignoring top-notch layers and adding custom Flatten, Dropout, and Output
Dense layers.

4. Create early stopping callback function on training loss parameter and model check-
point callback function to save only best performance weights of the proposed model.

5. (i) Select the Bbatch size ( (size)batch) to process images as 32 images while selecting
steps-per-epoch (SE) and validation-steps (SV) as per the below equations:

Sv = (size)train/(size)batch (4)

Sv = (size)valid/(size)batch (5)

Here, (size)train and (size)valid represents size of the training set and validation set,
respectively. (ii) Feed the training input images in our ready model with the validation
set as validation input images, and train it for 25 epochs straight. (iii) Best weights are
stored automatically in local storage, as per checkpoint call-back function passed.

6. Test the testing images dataset with the model after training and saving the best
weights, and record the predicted result.

7. Calculate the Test accuracy and Test Loss based on the predicted results, and calculate
all the statistical evaluation like the confusion matrix, specificity, sensitivity, kappa,
and AUC.

3.6. Performance Evaluation

The various performance measures have been calculated to show the effectiveness of
the proposed model. In the present work accuracy, sensitivity, specificity, receiver operating
characteristics (ROC) graph, area under curve (AUC), and Cohen’s kappa score has been
calculated. The Equations (6)–(8) describe mathematical formulas to calculate accuracy,
sensitivity, and specificity using true positive (TP), false positive (FP), true negative (TN),
and false negative (FN).

sensitivity =
TP

TP + FN
(6)

speci f icity =
TN

TN + FP
(7)

accuracy =
TP + TN

TP + FP + TN + FN
(8)

Here, true positive (TP) means the count of correct classification of positive class, true
negative (TN) is the count of correct classification of negative class, false positive (FP) is the
count of incorrect classification of positive class, and false negative (FN) means the count
of incorrect classification of negative class.

To visualize the performance of our model, an AUC and ROC graph has been used
because of its popular use in the medical field and was computed using the methods
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proposed in [32]. To handle the problem of imbalanced class and multi-class problems,
Cohen’s kappa (K) has been calculated using the Equation (9).

K =

(
accuracy(predicted) − accurcay(expected)

)
(

1− accuracy(expected)

) (9)

4. Results
4.1. Evaluation of Proposed Model over Testing Data Subset

Table 2 summarizes the performance of our model around the present study and
compared it with pre-existing models like ResNet50 and InceptionV3. The result of the
proposed model is evaluated on an independent testing subset of the development dataset.
During the multiclass comparison between the specified retinal disease classes (CNV, DME,
normal, and drusen), the proposed VGG-19 network architecture with transfer learning
observed an outstanding accuracy of 99.17%. The sensitivity and specificity values reported
are 99.0% and 99.5%, respectively. A high AUC value of 0.9997 is also reported in the model
evaluation. A comparison in computational time is also presented in the Table 2 to show
that transfer learning reduces computational time.

Table 2. Performance of VGG-19 based transfer-learning model and its comparison with pre-existing
models.

Parameters ResNet50 Inception V3 Proposed Model

AUC 0.9400 0.9500 0.9997
Kappa 93.6% 94.1% 98.89%

Sensitivity 92.41% 93.60% 99.00%
Specificity 93.81% 93.90% 99.50%
Accuracy 94.61% 95.63% 99.17%

Training Time(in min) 383 393 265
Testing Time (in min) 15 18 4

The final classification report of the model proposed in this novel research work is
shown below in Figure 7 along with the statistical evaluation parameters to support the
performance of our model and approach of this study.
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A confusion matrix representing specific assignment of various predicted output
results for various input images of four respective states of retina is shown in Figure 8. The
confusion matrix showed that the proposed model successfully classify the images into
corresponding retinal diseases.
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Table 3 presents some analysis of state of art techniques on the retinal disease classifica-
tion problem based on deep learning models [8–10,14–16,19,22,23] and non-deep learning
models [4–7,17,18,20,21].

Table 3. Comparative analysis of retinal disease detection.

Reference Approach Database Used Result and Observation

P. Srinivasan et al. [3]
(2014)

Used Histogram of Oriented
Gradients descriptors and SVM

for Classification

Publically available DHU
dataset

Accuracy for AMD = 100%, for
DME = 100%, for Normal = 86.6%,
(model suffered from overfitting)

Venhuizen et al. [18]
(2015)

Used BOVW
(Bag of Visual Words)

machine-learning algorithm

Bioptigen SD OCT Dataset
containing AMD and
Normal retinal scans.

Overall Accuracy = 0.984
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Table 3. Cont.

Reference Approach Database Used Result and Observation

G. Lemaître et al. [6]
(2016)

Implemented feature extraction
using Local Binary Patterns Proprietary Overall Sensitivity Score = 81.20%;

Overall Specificity Score = 93.70%

V. Gulshan et al. [8]
(2016)

Used deep learning based 10
binary Inception V3 model

architecture

Publically available
(EyePACS-1 and

Messidor-2) dataset

EyePACS-1 data: Overall AUC: 0.99,
Overall sensitivity: 90.30%, Overall

specificity: 98.1%
Messidor-2 data: Overall AUC: 0.99,
Overall sensitivity: 87.0%, Overall

specificity: 98.5%,

Apostolopoulos et al.
[19] (2016)

They have proposed to use a
two-dimensional DCNN model
for OCT images classification.

Bioptigen SD-OCT dataset Achieved accuracy = 99.7%

Alsaih et al. [5] (2017)
They have employed Linear

Support Vector Machine
techniques for OCT classification.

Proprietary Final Sensitivity score = 87.5% and
Specificity score = 87.5%

Karri et al. [9] (2017) Inception network
Publicly available DHU
dataset of OCT scanned
images of 45 patients.

Achieved accuracy for AMD = 99.0%,
for DME = 89.0%, for Normal = 86.0%

Venhuizen et al. [20]
(2017)

They have proposed to employ
Bag-of-Visual-Words algorithm

for features extraction, for
detection of AMD.

Heidelberg Spectralis
HRA-OCT dataset of

3265 eyes retinal images.

Accuracy = 98.0%, Sensitivity = 98.2%,
Specificity of = 91.2%.

Sun et al. [21] (2017)

They have developed an
automated retinal disease
detection model, applying

partitioning of image with feature
extraction using SIFT over the

Linear SVM model.

Heidelberg Spectralis
HRA-OCT dataset of

3265 eyes retinal images.

For AMD, DME and Normal states of
retinal their work have achieved a

Cognitive Ratio of 100%, 100%, 93.3%
on first set testing images and on
second set of testing images they

achieved Cognitive Ratio of 99.67%,
99.67%, 100% respectively.

Burlina et al. [14]
(2017)

Deep Learning
DCNN-AlexNet

National Institute of
Health AREDS

Accuracy: (88.4–91.6)%, kappa
score: 0.8

Hussain et al. [17]
(2018) Random Forest algorithm DHU dataset and a

proprietary dataset.
Accuracy of 94.0%, Final AUC score

of 0.990,

Tan et al. [15] (2018) 14-layer deep CNN Public (Kasturba Medical
College)

Overall Accuracy 95.47%, sensitivity
score = 96.4%, specificity

score = 93.7%

Lu et al. [7] (2018)
Combination of 4 binary

classifiers networks for detection
of retinal diseases.

Own proprietary OCT
scanned dataset.

The work has achieved an accuracy of
95.90%. Sensitivity is observed as

94.00% with specificity of 97.30% over
10-fold cross validation.

D. Kermany et al. [10]
(2018) Inception V3 architecture Mendeley dataset of OCT

scanned images.

Achieved overall accuracy of 96.60%
with specificity and sensitivity of

97.40%, 97.80% respectively,

J. De Fauw et al. [11]
(2018)

ensemble methodology over two
model networks as DenseNet and

U-net

OCT scanned dataset of
retinal images

Overall Accuracy of 94.50% with
AUC score of 0.992 over first set of
testing images; Overall Accuracy of

96.60% with AUC score of 0.999 over
second set of testing images,
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Table 3. Cont.

Reference Approach Database Used Result and Observation

Rasti et al. [12] (2018) MCME model with ensemble
methodology.

DHU dataset, NEH
dataset of retinal OCT

images.

Over DHU images dataset: Precision
of 98.3%, with Recall of 97.78% and

AUC score of 0.99 Over NEH images
dataset: Precision of 99.3%, with
Recall of 99.3% and AUC score

of 0.9980

Vahadane et al. [13]
(2018)

Patch based
Deep Learning Proprietary Precision: 96.43% Recall: 89.45%

Schlegl et al. [16]
(2018)

Deep Learning
DCNN Proprietary Accuracy: 94.00% Precision: 91.00%

Recall: 84.00%

F. Li et al. [22] (2019) Transfer Learning over VGG-16
network Proprietary

The proposed work achieved overall
Accuracy of 98.60%, Specificity of

99.4%. and Sensitivity of 97.8%

L. Fang et al. [33]
(2019) LACNN based model.

NEH OCT images dataset,
UCSD OCT images

dataset.

Over NEH images dataset: Sensitivity
of 99.3% with precision of 99.39% and

AUC score of 0.994.
Over UCSD images dataset: Accuracy

of 90.10% with precision and
sensitivity of 86.20% and 86.80%

respectively.

Feng. Li et al. [34]
(2019)

Employed ensemble methodology
over four models each based on

the ResNet50 network.
Proprietary

Achieved best performance as
accuracy of 97.90%, with Specificity:

99.4% and Sensitivity of 96.80%. Also
Kappa value of 0.9690, AUC score

of 0.9980.

Shankar K et al. [35]
(2020)

deep learning model named as
synergic deep learning (SDL) Messidor DR dataset Accuracy = 99.28, Sensitivity = 98.54,

Specificity = 99.38

Vives-Boix et al. [36]
(2021) CNN (Am-Inception V3)

APTOS (Asian Pacific
Tele-Ophthalmology

Society) 2019
Accuracy = 94.46%

Proposed work Transfer learning based deep
learning model

Mendeley dataset of
OCT-scanned images

Accuracy = 99.17%,
sensitivity = 99.00% and high

specificity of 99.50%.

The manual screening-based methodology can be prone to human errors [16] and
has proven to be time-consuming. The proposed approach is an automated process,
therefore, will provide quick, accurate, and consistent results over the retinal OCT scans.
The approach described here in this novel study achieved a remarkable accuracy of 99.17%
with a very high sensitivity of 99.00% and high specificity of 99.50%. The AUC was 0.9997.
The VGG-19 based proposed model performed better than results obtained by [5,7,9–11,
13,14,16,18,24], and our model shows comparable performance to those in [4,8,12,19,20,33].
The detailed description is mentioned in Table 3. As we know, OCT scans are widely used
for the detection of retinal disease; regardless, doctors and ophthalmologists need a lot
of experience in providing the manual classification of these diseases. Moreover, it is not
feasible for ophthalmologists to inspect a large number of OCT images by themselves.
The proposed transfer learning-based DL approach automates the whole process of retinal
disease classification and proved to be better than the pre-existing methods (see Table 2).

4.2. Evaluation of Proposed Model on Public DHU Dataset

Here, in this section, we show the result of the analysis performed over a totally
different and isolated dataset-DHU Dataset [4] to support the performance and accuracy
of our developed model. DHU dataset is a publicly available dataset of retina OCT scans,
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acquired from 45 participants: normal patients (15 count), dry AMD (Age-related macular
degeneration) patients (15 count), and DME patients (15 count). All these OCT images
in the specified dataset were obtained by Spectralis OCT imaging (Germany) under the
supervision of protocols issued by the Institutional Review Board. The imaging process
was performed at Duke University, Harvard University, and the University of Michigan.

As we know, the DHU dataset contains an extra class named AMD apart from Normal
and DME. The proposed model has been trained to detect the four classes of the retina-
CNV, DME, drusen, and normal. Therefore, the AMD subset images have been excluded
from our testing.

The performance comparison of ResNet50, InceptionV3, and the proposed VGG-19
model on the DHU dataset has been investigated as shown in Table 4. The performance
of the ResNet50 model over the two classes (normal and DME) is 86.67% and 80.0%,
respectively. Similarly, the performance of the InceptionV3 model over both the classes
(normal and DME) is 86.67% and 86.67%, respectively. The performance of the proposed
model over both the classes (normal and DME) is 100% and 100%, respectively, as shown
in Table 4. The proposed model clearly outperformed the rest of the models, confirming
the superiority of the proposed approach for retinal disease detection.

Table 4. Comparison with other models using DHU dataset.

Model Architecture

% of Volume Correctly Identified

Disease Class

Normal (Out of 15) DME(Out of 15)

ResNet50 Model 86.67% 80.0%
InceptionV3 Model 86.67% 86.67%

Proposed Model 100% 100%

4.3. Statistical Evaluation

We implemented the proposed deep learning model and calculated the overall accu-
racy, sensitivity, specificity, confusion matrix, precision, f1-score, and AUC parameters for
the part of statistical evaluation of our model. The ratio of the count of true positive results
to the total positive data is used for calculating the sensitivity in statistical evaluation.
The specificity is also evaluated as a ratio of the count of true negative results to the total
negative data. The accuracy of the proposed model is calculated as a ratio of the count of
true positive and true negative results to the count of total positive and total negative data.
We have also plotted the receiver operating characteristics (ROC) curve, which is actually a
plot between the true positive rate and the false positive rate of testing results recorded
during model evaluation. The higher the AUC score value of any model, the better the
model performance will be. At last, we evaluated the value; the larger the kappa value
of the model, the better its reliability. These statistical evaluations were done using the
Python package, sklearn library, matplotlib library, and seaborn library. These parameters
are not only be used to support the performance and nature of our trained model, but also
to compare the performance and validity of our work with the pre-existing models and
research works, respectively.

5. Discussion

In the present research, a novel approach of transfer learning based VGG-19 network
architecture is employed for the automatic and reliable detection of four major classes of
retinal diseases, namely CNV, drusen, normal, and DME. The model is trained on a very
large OCT scan images dataset of the retina, provided by Mendeley data, as 84,495 images
of retinal OCT scans. An independent testing dataset (part of the development dataset)
and another publicly available dataset, the DHU dataset (coming from a very different
source), are used for validating the performance of the proposed model. The results of
performance testing suggest that our approach has achieved a comparable accuracy with a
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high sensitivity and specificity with a significant AUC score for the automated detection
of retinal diseases from their optical coherence tomography images of the retina. The
work showed the proposed model accomplishment at a level similar to or better than the
pre-existing methods of detection.

The transfer learning methodology needs a huge amount of data for model train-
ing; otherwise, there may be chances of the problem of overfitting and underfitting. To
overcome these problems, the proposed model stopped the training process as soon as no
improvement in the validation dataset is seen for continuous three epochs. We also have
applied the data augmentation method to our image data to reduce the abovementioned
problems. Regardless, there are some limitations to this work. One limitation is the way
the data has been collected. We have obtained our data from Mendeley data organization
where they have used the Heidelberg Spectral imaging system. The device settings and
orientations could have affected the data and, in turn, may affect our model’s performance.
The other limitation is the amount of data available for training and testing the model. The
proposed model works when a huge amount of data is available and fails in the case of
limited availability of data. DNA-based computing works wonders in such cases (lim-
ited amount of data) in comparison to deep learning [37–39]. DNA-based computing is
nature-inspired and has been found effective in making intelligent diagnostic systems for
biomedical applications [40].

6. Conclusions and Future Scope

In this present novel study, a deep learning based model is developed to classify
the OCT scanned images of the retina into four classes of retinal diseases. The proposed
model is based on the VGG-19 network architecture. The work’s motivation came from the
increasing use of OCT imaging techniques and computer-aided diagnosis (CAD) in medical
disease detection. We got our direction from the previous study to develop a VGG-19
architecture-based transfer learning model for retinal disease detection. This model is being
trained, validated, and tested over the retinal OCT images dataset from Mendeley data
using the methodology of transfer learning (with pre-trained weights of ImageNet dataset).
The performance of the proposed model is not only being evaluated over the development
dataset but also over the foreign dataset, the DHU dataset. The work has been compared
with state-of-the-art models in retinal disease detection. A proper statistical evaluation
in terms of performance, specificity, sensitivity, AUC, Cohen’s kappa value, F-1 score, etc.
parameters has been carried out. The findings showed that the proposed transfer learning
model works better for the automatic detection of retinal diseases in comparison to that of
the state-of-the-art method. The proposed method is able to differentiate between the four
states of retina—CNV, drusen, DME, and normal—with high remarkable accuracy (99.17%),
sensitivity (99.00%), specificity (99.50%), and AUC (0.99917). In the future, the proposed
work can be extended for the detection of other diseases related to the retina, for example,
diseases like retinal tear, retinal detachment and retinitis pigmentosa, etc. The model can
also be investigated on the database of OCT angiography and fundus photographs.
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